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Abstract 
 
The current study provides a meta-analysis of global research on using representations to 
support the learning of mathematics in Pre-K through Grade 5. A total of 13 primary studies 
encompassing 1,941 subjects was analyzed. The weighted mean effect size for the 13 studies 
was reported to be ES = 0.53 (SE = 0.05). A 95% confidence interval around the overall mean 
– Clower = 0.42 and Cupper = 0.63 – proved its statistical significance and its relative precision. 
The calculated effect size signifies strong, robust support for the use of representations in Pre-
K through Grade 5 mathematics classes and highlights the importance of providing students 
with opportunities to construct and explore transitioning between various forms of 
representations. Moderator analysis revealed differences among the effects due to a different 
type of representation, grade levels, and concepts taught. A synthesis of moderator effects 
allowed for a formulation of a general way of applying representations that produces maximum 
learning effects and that the teachers can adopt in their school practice. While the effect sizes 
provided a means of determining the most effective ways of applying representations, 
questions about how to develop students’ transitioning from one representation to another 
remain unsolved. A further discussion of the impact of the study findings beyond the 
boundaries of elementary mathematics classrooms follows.  
 
Keywords: meta-analysis, mathematical representations, internal and external representations, 
mathematics teaching and learning, elementary school   
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Introduction 
 
It is well documented that reading and understanding a mathematical context requires 
embodying various abstract entities such as symbols, graphs, and tasks encoded symbolically 
in a language that students can comprehend. Given that elementary students are at the stage of 
developing their abstract thinking, designing effective teaching strategies that would allow 
such communication is not an easy task for mathematics educators and curriculum designers 
thus attempts are made to make the process more accessible for the learners. Research findings 
(e.g., Clark & Mayer, 2011) show that learning mathematical objects and the development of 
corresponding mental images are linked. On the other hand, imagination and the ability to 
construct, retrieve and explore internal representations form foundations for learning of 
mathematics (Lingefjärd & Ghosh, 2016). The ultimate question that was posited in this study 
was what representations are the most accessible to an elementary math student.  
 
Researchers (e.g., Hoffler & Leutner, 2007) have determined that people learn more deeply 
from words supported by graphics than from words alone. This finding corresponds with the 
modern view on mathematical learning, which claims that utilizing multiple representations 
and making connections between graphical, symbolic, and verbal descriptions of mathematical 
relationships will empower and simultaneously help students develop a deeper understanding 
of mathematical relationships and concepts (National Council of Teachers of Mathematics 
[NCTM], 2000; Porzio, 1999). Following this notion, a general agreement exists that using 
different mathematical forms of representations and translating between these forms, are key 
skills in mathematics (e.g., Ainsworth, Bibby, & Wood, 2002).	In order to respond effectively 
to learners’ perception, further research is necessary. Nistal, Van Dooren, & Verschaffel (2012) 
noted that there was a need for research that would focus especially on the contextual factors 
that promote flexible representation choice for students in mathematics. It was hoped that this 
study would shed more light into this area. 
 
Representations, especially their graphical forms, can also be perceived as learning experiences 
that are transmitted to the learner by pictorial media (Clark & Mayer, 2011). As such, they help 
the learner identify meaningful pieces of information and link the information with the 
learner’s prior experiences. Although the constructs of using diverse forms of representations 
to enhance the development of mathematical concepts and problem-solving techniques have 
been widely researched (e.g., Jitendra, Star, Rodriguez, Lindell, & Someki, 2011; Weber-
Russell & LeBlanc, 2004), a formal meta-analysis in this domain was not found using standard 
library search engines. Students’ early experiences with the content of mathematics might have 
a profound impact on their further engagement and success in the subject. Therefore this study 
emerged to fill the gap and to provide a broader view of using representations to support the 
learning of mathematics in elementary school. 
 

Theoretical Background 
 
Representations and Constructivist Learning Theory  
The effect of using representations is not new to the mathematics education community. 
However, it has recently attracted more attention by being supported by the constructivist 
learning theory that leads contemporary research in education (Cuoco, 2001). By treating 
mathematical concepts as objects, and thus embodying them with representations that can be 
observed and manipulated, a construction of mental pictures in the students’ minds can be 
evoked (Dubinski, 1991). Such constructed mental pictures are stored in students’ long-term 
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memory and are available for retrieval. Research (Zazkis & Liljedahl, 2004) suggests that one 
of the ways to induce the process of converting concepts to objects is to create representations 
and act on them. Clark and Mayer (2011) suggested that knowledge acquisition is based on the 
following principles of learning: dual channel – people have separate channels for processing 
visual/pictorial material and auditory/verbal material; limited capacity – people can actively 
process only a few pieces of information in each channel at one time; and active processing – 
learning occurs when people engage in appropriate cognitive processing such as attending to 
relevant material and organizing the material into a coherent structure. Active learning appears 
as a method that supports the linkage of external representations with internal images.  
 
Human cognitive architecture (Paas, Renkl, & Sweller, 2003), states that the most crucial 
structures affecting the rate of information processing are working memory and long-term 
memory. Human working memory has limited capacity as opposed to long-term memory, 
where capacity is unlimited (Kintch, 1998). For the information to be stored in a learner’s long-
term memory, it needs to be processed initially through its working stage. Being presented with 
complex information, the learner might feel overwhelmed, which might result in the 
information not being fully processed. This state will consequently block the information from 
reaching the learner’s long-term memory and from being learned and accumulated. The 
primary goals of using representations are to reduce the contextual load by converting the 
information to a visual form and to transmit such information to the learner’s visual channel. 
This process in return will reduce the need for high capacity of working memory. The virtue 
of using representations is rooted in their capacity to present the knowledge of conveyable 
graphical embodiments supported by verbal elaborations rather than vice versa. Such 
knowledge presentation creates appealing conditions for being longer retained and accessible 
for future usage.  

 
Representations in Mathematics 
Representations are broadly defined as passive entities. By learner’s active engagement, they 
are transformed into active semiotic resources (Thomas, Yoon, & Dreyfuss, 2009) and can be 
stored in a learner’s long-term memory. Knowledge externalized by graphics is easily 
retrievable for analysis and can be readily exhibited and communicated (Ozgun-Koca, 1998). 
Representations as a means by which individuals make sense of situations (Kaput & Roschelle, 
1997) can be expressed in forms of combinations of written information on paper, physical 
objects, or a carefully constructed arrangement of thoughts. Schnotz (2002) emphasizes the 
distinction between descriptive (symbolic) and depictive (iconic) representations. While 
depictive representations are most useful to provide concrete information and are often 
effective as specific information, descriptive representations usually express abstract 
information. Duval (2006) claimed that using various representations in mathematics classes 
is a necessity because only multiple external representations allow learners to utilize the 
different advantages each representation offers. Falcade, Laborde, & Mariotti, (2007) claimed 
that the link between external representations and internal representations goes beyond pure 
analogy in their functioning and rests on the real tie that can be recognized between particular 
tools (external representations) and particular signs (internal representations).  
 
Each representation of a mathematical object brings some aspects to the fore, simultaneously 
hiding other aspects of the object and thus affecting the way the object is seen (Laborde, 2007). 
Representations can also be used to explore aspects of a context that might otherwise not be 
apparent to a learner; they amplify properties of mathematical structures not easily imaginable 
(Monk, 2003). In the process of knowledge accumulation, representations are converted into 
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internal images. Mediated by the level of entry into learners’ memory systems, representations 
are categorized as external or internal. Both types of representations are interrelated in the sense 
that the meaning of an internal representation stored in a learner’s long-term memory strongly 
depends on the learner’s perception of its external counterpart.  
 
External representations (see Figure 1) encompass physically embodied, observable 
configurations – such as pictures, concrete materials, tables, equations, diagrams, and drawings 
of one-, two-, or three-dimensional figures or various forms of schemata (Jitendra et al., 1998).  
 

 

A.  Pictorial 

 

B. Schemata  

 

 
C. Concrete 

 
Figure 1. Examples of representations using in elementary school.  

(Source: https://www.google.com) 
 
All these embodiments can be provided in the form of drawings or can be digitalized by 
computer programs. They can also be generated by the instructor as he/she introduces the 
representations to the learners. External representations also encompass dynamic graphics, 
which are generated with the help of technology, for example, graphing calculators or 
computer-based simulations (Goldin & Shteingold, 2001). Ainsworth and Van Labeke (2004) 
categorize external representations as time-persistent representations, time-implicit 
representations, and static representations. In mathematical terms, time-persistent 
representations are embodied by algebraic functions, time- implicit by relations and static 
representations would encompass any drawings that students produce, not necessarily placing 
their products in a coordinate system. 
 
Eisenberg and Dreyfus (1991) noted that students might end up with an incorrect solution if 
their algebraic skills are not strong; however, if they possess the skills to graphically solve the 
problem or support its solution process, the graphed representation might serve as a backup or 
a way of solution verification. Being exposed to mathematical representations, learners 
“acquire a set of tools that significantly expand their capacity to model and interpret physical, 
social, and mathematical phenomena” (NCTM, 2000, p. 4). In this regard, external 
representations can also serve as a means to overcome students’ misconceptions in science 
classes (Thompson & Logue, 2006).  
 
Internal representations encompass mental images corresponding to internal formulations of 
what human beings perceive through their senses and as such they cannot be directly observed. 
Internal representations are defined as the knowledge stored in a learner’s long-term memory. 
Internal representations are formulated based on one’s interaction with the environment 
(external representations) and are altered throughout a lifespan. In the process of learning, 
external representations prompt the emergence of internal representations. Being able to 
formulate concepts’ internal representations through the process of understanding their 
external embodiments and retrieving the mental pictures plays an essential role in 

IAFOR Journal of Education Volume 6 – Issue 3 – Winter 2018

133

https://www.google.com


 

 

communicating messages in mathematics. Hiebert and Carpenter (1992) maintained that 
learners establish a strong relationship between created external and internal representations 
and that the strength of linking these representations determines students ‘understanding.  
 
Furthermore, internal representations of the knowledge accumulated through experiencing 
visual representations produce stronger impulses in learners’ long-term memory. Enabling 
these experiences by engaging and intellectually stimulating learners through carefully 
designed learning environments supported by representations deems to be a significant factor 
in nurturing effective learning and developing students’ mathematical knowledge. Nitsch et al. 
(2015) found that that to understand the concept of function, that is central in mathematics 
curriculum, it important not only to know the different mathematical representations of 
functional dependency, but also the translations between these forms of representations. For 
students to develop a holistic understanding of the concept of mathematical functions, they 
have to be able to identify the connecting elements and to combine these representations.   

 
Synthesis of Prior Research 

 
As the constructivist theory strongly supports the use of representations in the learning process, 
several research studies have explored the effects of using representations on students’ math 
concept understanding. These results converge with contemporary theories of cognitive load 
and multimedia learning principles developed by Clark and Mayer (2011) and have practical 
implications for mathematical instructional designs. A meta-analysis of 35 independent 
experimental studies conducted by Haas (2005) shed light on using representations as a means 
of supporting teaching methods at the secondary school level. Haas concluded that math 
instruction, supported by multiple representations, manipulatives, and models, produced a high 
(ES = 0.75) effect size. Schemas, which are defined as generalized representations that link 
two or more concepts are frequently researched at the Pre-K through fifth-grade level. For 
example, Jitendra and colleagues (1998) found that having students of Grades 2-6 categorize 
problems and then having them solve the problems by using schemas produced a positive 
medium-size learning effect (ES = 0.45). The virtue of using representations embodied by 
schemas is that they are easily converted by learners into internal representations, and, as such, 
they can be stored in long-term memory and allow for treating diverse elements of information 
regarding larger, more general units (Kalyuga, 2006). According to Pape and Tchoshanov 
(2001), schematic representations also lead to enhanced student problem-solving performance.  
 
Another group of researchers investigated whether representations should be provided to 
students or if the students should be the producers of representations (e.g., De Bock, 
Verschaffel, Janssens, Van Dooren, & Claes, 2003; Rosenshine, Meister, & Chapman, 1996). 
These scholars concluded that if representations are provided, their forms must be sufficiently 
informative and detailed to be transferrable by students into mathematical algorithms. They 
also emphasized that having students construct their representations benefits the learners the 
most. The importance of possessing the ability to transfer a given context (e.g., a story problem) 
into a representation was highlighted by Jonassen (2003), who claimed that successful problem 
solving requires the comprehension of relevant textual information along with the capacity to 
visualize that data and transfer it into a conceptual model. Following Riley, Greeno and Heller 
(1984), developing students’ abilities to identify the matching representation that helps with 
problem conceptual understanding should emerge as a priority of elementary mathematics 
teaching. 
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Representations are also used to support the introduction of new mathematical concepts. For 
example, several studies (Tzur, 1999) were conducted on the development of students’ 
notations of fractional parts of areas, called fair sharing, which provided a meaningful 
representation of dividing a whole into parts that were then easily comprehended by elementary 
students. Hiebert (1988) noted that students’ understanding of new ideas strongly depends on 
the degree to which the learners are engaged in investigating the relations between new 
representations and the representations whose understanding is already mastered. A study 
conducted by Ross and Willson (2012) not only supported the claim that mathematics students 
learn more effectively when instruction focuses on using representations but, moreover, proved 
that the most effective strategies for building representations are those rooted in constructivist 
learning theory. The range of using representations in Pre-K through fifth grade is wide, thus 
synthesizing the experimental research findings and identifying the most effective strategies 
manifests as a worthy undertaking. 

 
Challenges of Inducing Representations in Pre-K through Grade 5 
Investigating the effect of using representations has recently attracted more attention due to 
being supported by the constructivist learning theory that leads contemporary research in 
education (Cuoco, 2001). Such constructed mental pictures are stored in students’ long-term 
memory and are available for retrieval. Research (Zazkis & Liljedahl, 2004) suggests that one 
of the ways to induce the process of converting concepts to objects is to create representations 
and act on them. Sfard (1991) concluded that the process of transferring abstract mathematical 
concepts into their mental images is challenging for both the learner and the instructor, who is 
to guide the learner through the transferring processes. What are the challenges faced by 
elementary school children as they attempt to embody mathematical structures into visual 
representations?  
 
Equations and their conceptualization are frequently investigated in K-5 mathematics research. 
Swafford and Langrall (2000) noted that students generally can make use of various 
representations and can identify patterns between isolated variables, but they cannot find 
consistency among a larger set of variables or generalize the patterns and convert them into 
mathematical forms. Dreyfus (1991) suggested four learning phases with representations: using 
one representation; (using more than one representation; (making links between parallel 
representations; and integrating the representations. Representations at the elementary school 
level encompass general structures used in mathematics such as ratio, rate, percent or newly 
developed schemata for problem-solving, thus pinpointing and understanding how to uncover 
these principles acts as a catalyst for selecting correct representation. According to Swafford 
and Langrall (2000), the emphasis in the curriculum at the pre-algebra level should be on 
developing and linking multiple representations to generalize problem situations. They 
concluded that the lack of generalization skills is rooted in instruction focused on reaching only 
the initial stages of problem analysis and leaving the process of generalization for the students 
to formulate. A similar conclusion was reached by Deliyianni, Monoyiou, Elia, Georgiou, and 
Zannettou (2009), who observed that first-graders restricted themselves to providing unique 
solutions even though the questions required a general pattern formulation. Other researchers 
(e.g., Lesh & Harel, 2003) have shown that elementary school children bring potent intuitions 
and sense-making tools, yet how to mediate these intuitions with abstract math concepts to 
embody these concepts into representations is a challenge still facing the mathematics research 
community.  
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Research Methods 
 
Meta-analysis, with its quantitative methods, was used to compute the research findings. Meta-
analytic techniques provide tools to assess the learning effect size of treatments, considering 
a gathered pool of studies as a set of data collected within prescribed criteria. By allowing 
the measurement of the effect sizes according to the population of participants in primary 
studies, such undertaking allows for analyzing a larger number of studies that can vary by 
population sizes and also by the conduct (Gijbels, 2005). Furthermore, meta-analysis allows 
also for employing subgroup moderator analysis and extracting factors that contribute to the 
magnitude and direction of the mean effect size. 
 
Research Problems 
Based on the prior research, a hypothesis suggesting that using representations in mathematics 
helps students comprehend abstract mathematical concepts and enhances the skills of the 
concepts’ applications emerged for this study. Understanding the degree to which 
representations help learners comprehend the different mathematics entities, compared to 
traditional methods of instruction, constituted the main objective of this study and guided the 
research questions: 
 

1. What are the magnitude and direction of the learning effect sizes of using 
representations in Pre-K through fifth-grade mathematics when compared to 
traditional teaching methods?  

2. What are the possible moderators that affect students’ achievement and what 
classroom settings produce the most optimal learning effect sizes when 
representations are used? 

3. What are the features of the most effective representations in mathematics suitable 
for Pre-K through Grade 5 levels? 

 
It is hoped that the answers to these questions will advance the knowledge of using 
representations and assist math curriculum policymakers to design effective learning materials.  
 
Data Collection Procedure 
This meta-analysis sought to encompass 12 years of global research on using representations 
in Pre-K through fifth-grade mathematics, with student groups ranging in age from 3 to 12, in 
both public and private schools, with a minimum sample size of 15 participants. In the process 
of collecting the applicable research studies, ERIC (Ebsco), Educational Full Text (Wilson), 
Professional Development Collection, and ProQuest Educational Journals, as well as Science 
Direct, Google Scholar, and other resources available through a university library, were used 
to identify relevant studies published between January 1, 2000, and December 31, 2012. While 
extracting the relevant literature, the researchers used the following key terms: graphical 
representations, mathematics education, primary, students, and experimental research. In 
order to broaden the search, the terms graphics, visualization, and problem-solving were also 
used. Such defined criteria returned 131 papers, out of which 13 satisfied the conditions for 
meta-analysis (13 effect sizes). Several studies, although providing valuable findings, were 
rejected due their qualitative type (e.g., Castle & Needham, 2007) or due to their focus on 
comparing the effects of using representations that did not contain control groups (e.g., Coquin-
Viennot & Moreau, 2003).  
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Coding Study Features 
The main construct under investigation was the learning effect of using representations in Pre-
K through fifth-grade mathematics classes. While some of the characteristics, for example, 
year of study conduct, locale, or type of research design, were extracted to support the study 
reliability, others, like grade level or intervention type, were extracted to seek possible 
moderators. Following are the descriptions of these features that were further aggregated to 
apply a subgroup moderator analysis. 
 
Grade. This variable described the grade level of the group under investigation and referred to 
groups ranging from kindergarten to Grade 5. 
 
Descriptive parameters. Descriptive parameters encompassed the locale where the studies 
were conducted, the date of publication, and the sample size representing the total number of 
subjects under investigation in experimental and control groups. 
 
Publication bias. All studies included in this synthesis were peer-reviewed and published as 
journal articles; thus, no additional category for publication was created. 
 
Group assignment. This categorization refers to the mode that was used to select and assign 
research participants to treatment and controlled groups. Two main groups were identified: (a) 
randomized, where the participants were randomly selected and assigned to the treatment and 
control group; and (b) quasi-experimental, where the participants were assigned by 
administrator selection. This categorization is aligned with Shadish, Cook and Campbell’s 
(2002) definitions of group assignment. 
 
Type of research designs used in the meta-analysis.  Only pretest-posttest experimental 
studies with control groups were synthesized.  
 
Intervention. The intervention (treatment approach) was classified into four categories 
reflecting the type of representations used in Pre-K through fifth-grade mathematics as defined 
by Swing, Stoiber, and Peterson (1988) and Xin and Jitendra (1999): pictorial (e.g., 
diagramming); concrete (e.g., manipulatives); mapping instruction (e.g., schemata based); and 
other (e.g., storytelling, keywords). 
 
Output assessment. This variable described the assessment instrument and indicated whether 
the assessment was developed by the researcher or was standardized.  
 

Data Analysis 
 
The following analysis is organized deductively. It begins by describing the general study 
characteristics, moves to discuss the mean effect size, and concludes by presenting subgroup 
moderator computations. Such established sequence follows the order of the study research 
questions. 

 
General Study Characteristics 
The summary of the study characteristics extracted from the pool of experimental pretest-
posttest studies is presented in Table 1.  
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Table 1. Tabularization of experimental pretest-posttest study features 
 

Authors Date Locale RD SS GL IRT 
 

Alibali, Phillips, & Fischer 2009 USA QE 91 3rd & 4th Pictorial 
Van Oers 2010 Netherlands QE 239 4th Pictorial 
Poland, Van Oers, &Terwel 2009 Netherlands QE 54 2nd Schemata based 
Xin, Zhang,  Park, Tom, 
Whipple, & Si 

2011 USA QE 27 4th Schemata based 

Booth & Siegler 2008 USA R 52 1st Pictorial 
Csikos,  Szitányi, &Kelemen 2012 Hungary QE 244 3rd Pictorial  
Gamo, Sander, &Richard  2010 France QE 261 4th & 5th Schemata based 
Terwel, Van Oers, Van Dijk, 
&Van den Eeden 

2009 Netherlands R 
 

238 5th Pictorial 

Casey, Erkut,Ceder, & Young 2008 USA QE 76 Pre-K Other (storytelling) 
Jitendra, Griffin, Haria, 
Leh, Adams, & Kaduvettoor 

2007 USA QE 88 3rd Schemata based 

Fuchs, Fuchs, Finelli, Courey, 
& Hamlett 

2004 USA R 
 

436 
 

3rd 
 

Schemata based 

Saxe, Taylor, McIntosh, & 
Gearhart  

2005 USA QE 84 
 

4th & 5th Pictorial 

Fujimura  2001 Japan R 51 4th Concrete 
 
Note. SS = sample size, GL = grade level, RD = research design, QE = quasi-experimental, R = randomized, 
IRT = intervention representation type. 

 
The data revealed that there is substantial diversity in the representations used in elementary 
mathematics classes, ranging from schemas supporting problem-solving to storytelling 
supporting operations on fractions. The majority of the studies (nine, or 69%) were quasi-
experimental, while four (31%) were randomized. Regarding grade, a dominating group of six 
studies was represented by fourth grade. Because problem-solving dominates the math learning 
objectives in K-12 math education, how representations help students improve their problem-
solving techniques emerged as a possible moderator of the study. Considering the type of 
intervention, pictorial (six studies, or 46%) and schemata based (five studies, or 38%) 
dominated the pool. 
 
The Mean Effect Size and its Significance  
The quantitative inferential analysis in the form of a meta-analysis was performed on pretest-
posttest experimental studies. The outcome variable, defined as the overall effect size of using 
representations in mathematics teaching was sought in this meta-analysis. Student achievement 
scores were further expressed as effect size computed using mean posttest scores of 
experimental and control groups and coupled standard deviation using Hedge’s (1992) formula. 
For the meta-analytic methods to be applied, the responses for the experimental studies were 
standardized, and the accuracy of the effect sizes was then improved by applying Hedge’s 
(1992) formula:  

  

In this formula;  represents the posttest mean score of the treatment group,  represents 
the posttest mean score of the control group, and represents pooled standard deviation. 
This process allowed the elimination of the sampling bias (Lipsey & Wilson, 2001). 
 

1 2x xg
s
-

=
*

1x 2x
s*
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The overall weighted mean effect size for the 13 primary studies (13 effect sizes) was reported 
to have a magnitude of 0.53 (SE = 0.05) and a positive direction. A 95% confidence interval 
around the overall mean – Clower = 0.42 and Cupper = 0.63 – indicated a nonzero population 
effect and its relative precision (Hunter & Schmidt, 1990). According to Lipsey and Wilson 
(2001), an effect of 0.53 is of medium size. Herein, the overall effect’s magnitude along with 
its positive direction indicated that the score of an average student in the experimental groups 
was 0.53 of a standard deviation above the score of an average student in the control groups. 
By incorporating the U3 Effect Size Matrix (Cooper, 2010), the average pupil who was taught 
mathematics structures using representations scored higher on unit tests than 70% of students 
who were taught by traditional methods. Thus, it can be deduced that using representations in 
the teaching of mathematics, as a medium supporting instruction, has a profound impact on 
students’ math concept understanding when compared to conventional methods of teaching. 
Therefore, contextualizing math ideas and letting students embed math operations in contexts 
meaningful to them has a positive effect on storing the ideas in their long-term memory. Table 
2 provides a summary of the individual effect sizes of the meta-analyzed studies along with 
their confidence intervals and qualitative findings. 

 
Table 2. Effect sizes of using representations in Pre-K through Grade 5 

 
Study  
(First  
Author)  

 
ES 

 
SE 

     95% CI 
Lower  Upper 

 
Research Findings 

 
Source of Assessment 

Alibali 
(2009) 

0.92 0.22 0.19 1.05 The strategy of representing the 
process of equalizing equations 
improved problem representation 
techniques.  

 
Researcher designed. 
 

Van Oers 
(2010) 

0.23 0.13 0.36 0.89 Children improved fraction 
understanding when they were 
allowed to construct own 
representations guided by the 
teacher.  

Researcher designed. 

Poland 
(2009) 

 

1.22 0.29 0.04 1.23 Introducing dynamic 
schematizing improved 
understanding of the concept of 
the process during problem-
solving. 

Researcher-created 
schematizing test. 
 

Xin 
(2011) 

0.60 0.39 -0.19 1.44 Conceptual representations 
helped students learn the process 
of problem solving. 

Used textbook items 
adopted by the districts; 
Cronbach ’s alpha = 0.70. 

Booth 
(2008) 

0.20 0.28 0.05 1.19 Providing accurate visual 
representations of the magnitudes 
of addends and sums increased 
children’s computational skills.  

Wide Range Achievement 
Test–Expanded (WRAT–
Expanded). 

Csikos 
(2012) 

0.62 0.13 0.36 0.88 Presenting word problems with 
different types of visualization 
(e.g., arrows) improved 
techniques of problem solving. 

Test items adopted from 
National Core Curriculum; 
Cronbach’s alpha = 0.83. 

Gamo 
(2010) 

0.61 0.14 0.34 0.91 Mapping data into graphical 
representations helped students 
with problems involving 
fractions. 

Researcher designed. 
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Terwel 
(2009) 

0.41 0.13 0.36 0.88 Having students learn to design 
representations helped them bring 
more model-based knowledge to 
the structure of mathematics 
problems. 

Researcher developed 
criteria; Cronbach’s alpha 
= 0.76. 

Casey 
(2008) 

 

2.00 
 
 
 

0.31 
 
 
 

0.38 
 

2.63 Representing geometry concepts 
in a story context improved math 
knowledge retention. 
 

Used Kaufman-Assessment 
Battery for Children (K-
ABC; Kaufman & 
Kaufman, 1983). 

Jitendra 
(2007) 

 

1.36 0.22 -0.12 1.07 Addition and subtraction: used 
graphics to support multiple 
representations. 

Used Pennsylvania System 
of School Assessment math 
test. 

Fuchs 
(2004) 

 

0.22 
 
 

0.19 0.26 
 

0.99 The applied schema for problem-
solving improved students’ 
algorithmic outcomes.  

Researcher-developed. 
 

Saxe 
(2005) 

 

0.33 
 

0.22 
 

0.18 
 

1.07 Percent: represented fractions 
with standard part-to-whole 
representations. 

Researcher-developed. 

Fujimura 
(2001) 

0.71 0.29 
 

0.05 1.20 Highlighting the idea of physical 
units in setting the proportions 
improved students’ conceptual 
understanding. 

Researcher developed; 
interrater agreement 97%  
(N = 76). 

 
Note. ES = effect size, SE = standard error. 

 
Calculated confidence intervals (CIs) for each effect size revealed that 11 of the effect sizes 
fell within 95% confidence intervals. The researcher used Statistical Package for the Social 
Sciences (SPSS) software to visualize the position of the effect sizes as well as the confidence 
intervals for each study around the computed overall mean of the pool of studies. Some means 
were revealed to be outside of the area of the funnel graph (see Figure 2). 
 

                   
 

Figure 2.  Funnel graph for the pretest-posttest experimental studies. 
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The individual effect sizes of some of the studies showed to be outside of the confidence 
intervals indicating a lack of homogeneity of distributions within the study pool. This was also 
depicted by the significant p-value (p < 0.001). As the purpose of a meta-analytic study is to 
compute effect size (Willson, 1983), the lack of homogeneity does not undermine the validity 
of the calculated mean effect; rather, it explicates the characteristics of the studies, indicating 
that some of them originated from different distributions.  
 
The highest learning effect size (ES = 2.00) was generated in a study conducted with 
kindergarten pupils who were exploring the creation of verbal representations of geometry 
concepts (Casey, Erkut, Ceder, & Young, 2008). This study revealed that immersing math 
concepts in an environment that students can relate to their experiences and fantasies and letting 
students explore the links makes the math concepts tangible and results in them being easily 
stored in students’ long-term memories. Another study with a high effect size (ES = 1.22), 
conducted by Poland, Van Oers and Terwel (2009), investigated the impact of dynamic 
representations on kindergarten students’ math achievement. Dynamic representations 
provided more opportunities for having the learners explore their structures, thus generating a 
higher engagement factor and consequently higher learning effects. A positive learning effect 
of students’ explorations was also advocated by Lesh and Harel (2003), who concluded that 
such situated learning enhances the processes of mathematical modeling that can play a vital 
role in developing students’ scientific curiosity and they are problem-solving beyond the 
primary school level.  
 
Analysis of Moderator Effects 
The process of a further synthesis of the studies’ features allowed for identifying the following 
moderators: treatment length, mode of introducing the representations, grade level, and content 
standards. The moderators were further disaggregated by their levels. Where applicable, the 
levels within the moderators were contrasted, and inferences on differences were made. The 
following criteria were applied to disaggregate the moderators. 
 
Treatment length. The treatment length followed a partition established by Xin and Jitendra 
(1999): short – less than one week; intermediate – between 1 week and one month; and long - 
more than one month. 
 
Mode of representation induction in the lesson cycle. This moderator followed operational 
roles of representations and contained two levels: concept introduction and problem-solving.  
 
Grade level. The large range of grades was distributed into two levels according to standard 
classification (NCTM, 2000). The lower group level encompassed all students from Pre-K to 
Grade 3, and the upper level included Grades 4 and 5.  
 
Content standards. This moderator reflected general standards examined in the studies that 
were clustered into the following: number and operations, proportions, and geometry. A 
summary of the weighted effect sizes is presented in Table 3.  
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Table 3. Summary of subgroups’ moderator effect sizes 
 

Moderator and Levels N ES SE 

 

95 % CI 

      Lower                        Upper 
Grade Level   
 Lower: Pre-K through 3 

 Upper: 4-5 

 
6 
7 

 
0.60 
0.47 

 
0.08 
0.07 

 
0.45 
0.33 

 
0.76 
0.60 

Representation Type 
  Pictorial 
  Schemata based 
  Concrete 
  Other 

 
6 
5 
1 
1 

 
0.45 
0.49 
0.71 
2.00 

 
0.06 
0.09 
0.29 
0.31 

 
0.32 
0.31 
0.05 
1.38 

 
0.57 
0.67 
1.20 
2.63 

Treatment Length 
   Short 
   Intermediate  
   Long 

 
5 
4 
4 

 
0.46 
0.53 
0.60 

 
0.07 
0.10 
0.10 

 
0.31 
0.33 
0.40 

 
0.61 
0.72 
0.80 

Content Standard 
   Numbers and operations 
   Geometry  
   Ratio and proportions 

 
10 
2 
1 

 
0.45 
1.61 
0.71 

 
0.06 
0.22 
0.29 

 
0.34 
0.17 
0.05 

 
0.56 
0.24 
0.20 

Mode of Induction   
Concept Introduction 
Problem-solving 

 
7 
6 

 
0.68 
0.49 

 
0.07 
0.08 

 
0.54 
0.34 

 
0.82 
0.64 

 
Note. N = number of participants, ES = effect size, SE = standard error. 
 
The computing of the mean subgroup effect sizes provided a basis for answering more detailed 
research questions. When compared by grade level, the effect of using representations was 
higher in Pre-K through Grade 3 than in Grades 4-5. This conclusion might be supported by 
the fact that as students’ progress with learning math concepts, they learn more abstract 
semantics that might be difficult to embody in representations, for instance, the idea of fraction 
division. Students can follow the initial and final stage of the process. However, the diversity 
of the methods of dividing that is embodied by the syntax of division along with the various 
representations of rational expressions might not be entirely comprehended and thus it needs 
more clarity.  
 
When mediated by the type of representation, concrete and others produced the highest effect 
sizes; yet, their significance could not be fully apprehended because each subgroup was 
represented by a single primary study. When pictorial representations (ES = 0.45) and 
schemata-based representations (ES = 0.49) were contrasted, schemata representations showed 
a higher impact on student learning, which supports the findings of other scholastic research 
(e.g., Jitendra et al., 2007; Terwel, Van Oers, Van Dijk, &Van den Eeden, 2009; Xin et al., 
2011). Overall, schemata-based representations and their applications emerged as the main 
type of representations supporting problem-solving. According to Owen and Sweller (1985), a 
schema is a general cognitive structure that allows the learner to categorize the problem and 
then apply specific tools to solve it. A moderate effect size (ES = 0.49) indicates that this 
learning strategy helps students understand underlying mathematical ideas in given word 
problems and solve them. Hiebert and Carpenter (1992) posited that while developing the 
schemas, students activate a complex network of concepts stored in their long-term memory. 
Furthermore, the networks constitute the model that will be called an internal representation of 
the domain embodied by an external representation. As Xin et al. (2011) suggested, instead of 
telling students, for instance, the numerical magnitude of the unit rate, e.g., ten apples per 
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basket, demonstrating students a real concrete representation along with its symbolic 
mathematical model will better support the conceptual understanding and its mathematical 
embodiment.  
 
How should representations be furnished to effectively develop the conceptual networks? 
Learners can be provided with the representations, or the representations can be derived by the 
learners under the teacher’s guidance. It is inferred from this study that providing students with 
opportunities to derive the representations deems to be a more effective teaching strategy 
because it allows the learners to retain the concepts longer and apply them in new situations 
more frequently. 
 
An interesting direct variation was observed when the effect sizes were contrasted with 
treatment lengths. It became apparent, from examining this relation, that the longer the 
treatment, the higher the effect size (ES = 0.46 for short treatments, ES = 0.53 for intermediate, 
and ES = 0.60 for long). This result provides support for applying representations in classes 
daily.  
 
Concerning content standards, geometry representations yielded a higher effect size (ES = 
1.61). This result reflects the visual nature of content in this branch of mathematics, which by 
virtue is rooted in representations. The analysis of the concluding subgroup—mode of inducing 
in the lesson cycle—allowed contrasting the effect sizes of using representations to support 
conceptual understanding and problem-solving. It is apparent that representations are more 
effective with concept introduction (ES = 0.69) than problem solving (ES = 0.49). Thus, one 
could conclude that supporting concept introduction with representations builds a stronger 
network of impulses in students’ long-term memory. 
 
Summing all these findings led to the formulation of a classroom setting that would generate 
the highest learning effect sizes. It seems that using concrete representations to introduce 
geometry concepts in Pre-K through Grade 3 would yield the highest learning effects.  
 
The research findings also allow for the formulation of recommendations for effective 
representations. Fujimura (2001) concluded that representations should share similar features 
as the target domain and must be manipulative so that children can explore and uncover 
embedded math structures by themselves. He further suggested that representations should be 
designed in a way that they develop children’s creativity in constructing mathematical models. 
Casey et al. (2008) found that students retain mathematical knowledge if the knowledge is 
embedded in a story context. Developing mathematical knowledge through sequenced 
mathematics problems related to the storyline is also suggested by the researcher of the meta-
analysis. Booth and Siegler (2008) highlighted accuracy and transparency of representations 
as a significant factor affecting students’ mathematical learning in early grades, whereas 
Poland et al. (2009) brought forth the idea of using dynamic representations to support the 
processes of arithmetic operations. 
 
As mathematics seeks to develop students’ concise, abstract thinking, the results of this 
synthesis show that it also needs to reflect on representations that students use in daily life and 
whose contents are adequate to their experiences. Presenting artificially created representations 
that do not adhere to students’ experiences might disconnect mathematics concepts from the 
realm and rather support the notion that mathematics is an abstract subject. 
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General Conclusions 
 
The findings of this study support the following hypothesis: representations help Pre-K through 
fifth-grade students learn and apply abstract math concepts, especially when such 
representations are applied to support new concept understanding and students’ problem-
solving skills. Certain limitations and recommendations for further research emerged from this 
study, as discussed below.  
 
Threats to Research Validity 
The primary parameter limiting the study findings was a lower-than-expected pool of primary 
studies that satisfied the conditions to be meta-analyzed. The validity of the study computations 
was supported by double research data coding at the initial and concluding stages of the study 
process. Any potential discrepancies were resolved. Although strictly specified, the literature 
search was undertaken with broader conceptual definitions in mind that allowed for, as 
suggested by Cooper (2010), adjustment of the definitions and strengthening of the literature 
relevance. Thus, as the initial literature search revealed that representations in Pre-K through 
Grade 5 are often used to support problem-solving, the term problem solving was then used to 
locate more studies. 
 
Schemata as a Major Type of External Representations  
Among different representations (see Table 1) schemata-based representation and their 
applications emerged as the most commonly used to support problem-solving. According to 
Owen and Sweller (1985), a schema is a general cognitive structure that allows the problem 
solver to categorize the problem and then apply certain tools to solve it. A moderate effect size 
(ES = 0.49) indicates that this learning strategy helps students understand underlying math 
ideas in given word problems. Hiebert and Carpenter (1992) posited that in the process of 
developing the schemata, students’ thinking blends a complex network of concepts in one 
coherent picture. Furthermore, the networks constitute a mental model that will be called an 
internal representation of the domain imaged by an external representation. The conceptual 
networks can be developed either by representations provided by the teacher or by 
representations derived by the learners under a teachers’ guidance. 
    
Is having students use schemata sufficient to have them learn the holistic picture of the meaning 
of this mathematical representation? Several researchers concluded that once children are 
exposed to certain representations – for instance, schematic representations to solve problems 
– they retain those methods and apply the schemas regardless of age (Coquin-Viennot & 
Moreau, 2003). Some scholars noted (e.g., Castle & Needham, 2007), this idea cannot be 
overemphasized; children also need some working space to analyze problems and devise their 
ways to solve the problems with the support of provided schemata. Thus schemata should be 
perceived as suggestions for mathematization of certain patterns not as fixed formulas to use. 
It seems that more research should focus on having students recognize the type of scientific 
underpinning of the problem that students should apply to determine the principles embedded 
in a given word problem. 
 
Hiebert and Carpenter (1992) proposed four semantic categories (schemata) for arithmetical 
operations that are: change, combine, compare, and equalize.  Using these schemata to model 
story problems allows certain flexibility, for example, in some cases can be perceived as 
compare, or compare can suffice to combine. Emphasizing the schemata to reach the final 
solution reduces learners’ opportunities to explore and be immersed in the process of analyzing 
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the problem structure. There can also be cases when two or more schemata can be used in 
successions. For example, in order to compare, students might need to combine similar 
elements first. Thus students should be allowed to exhibit flexibility in applying the schemata 
and interpret them. However, that the primary meaning of each should be consistently 
executed. To illustrate that consider the following problem discussed by Jitendra et al., (2007):  
Music Mania sold 56 CDs last week. It sold 29 fewer CDs last week than this week. How many 
CDs did it sell this week?  This problem was intended to support the idea of compare. There is 
merit to use the schema of compare in this problem, but is the schema compare the most 
representative to mathematize the process of selling the CDs? The problem mentioned two 
events happening at two different time instants referring to similar objects, can then the learner 
be directed to considering rather finding the difference? Thus would the schemata of change 
better describe the process and elicit its solution? It seems that referring students to compare 
gears their thinking toward the output of the problem thus finding the final product, not toward 
the principal process, the change that supported the process of reaching the output. By directing 
students’ attention to the problem output, the phase of problem analysis is reduced.  Referring 
to the problem context and considering the definition of change as Change = Final value – 
Initial value, and solving for Change, one will receive Change = This week sells – Last week 
sells. Substituting the given values results in 29 = This week sells – 56, that leads further to 
This week sells = 56 + 29 which leads to the conclusion that Music Mania sold 85 CDs. With 
the implementation of change, the representation involved negative numbers that perhaps were 
not intended in Jitendra’s study. Thus to further discuss the applicability of this problem to 
Grade 3 math curriculum, the problem would have to be redesigned, however providing 
students with the flexibility of exercising the underlying process that is missed is worth further 
research.  Zooming further change in quantity values is concluded by subtracting the initial 
value from the final value: Change = Ending – Beginning. This standard definition of change 
is applied not only in mathematics to calculate, for example, instantaneous or average rate of 
change (e.g. Stewart, 2006) but also in sciences, especially in physics where the concept of 
change is often used to calculate change of temperature, or object’s displacement (e.g., 
Giancoli, 2005). 
 
One might be interested in learning how the schemata of change are induced in the literature. 
The idea of using change was introduced by Marshall (1995) see Figure 3 and was modeled by 
the following problem; Jane had 4 video games. Then her mother gave her 3  video games for 
her birthday. Jane now has 7 video games.  
 
 
 
 
                                                                CHANGE 
 
                                                                                                                                                           
 
                        BEGINNING                                                                           ENDING   
 

Figure 3. Representation of change inspired by Marshall (1985). 
 
Change in quantities values is concluded by subtracting the initial value from the final value: 
Change = Ending – Beginning. This standard definition of change is applied not only in 
mathematics to calculate, for example, instantaneous or average rate of change (e.g.  Stewart, 

         +3 
Video Games 
 

Vi 
4 

Video Games 
 

7 
Video Games 
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2006) but also in sciences, especially in physics where the concept of change is often used to 
calculate change of temperature, or object’s displacement (e.g., Giancoli, 2005). This equation 
can be rearranged to reflect Marshal’s idea Beginning + Change = Ending. However, the 
rearranged form is not aligned with the fundamental principle of the process of change that 
seems to be the core idea of the problem. If the schema of change were to be used, then perhaps 
the diagram could have been redesigned to reflect on the difference in the quantity amount that 
represents the change.  
 
These two examples were brought up to signify a need for verifying interdisciplinary 
consistency of the interpretations of the fundamental concepts that are meant to support 
problem-solving in K-5 mathematics. It is understood that the equations symbolizing the 
schemata can be rearranged and executed with a dose of flexibility. What stages were being 
used would depend on individual perception, yet general foundations for problem analysis 
would perhaps require more consistency. Perhaps establishing fewer schemata and letting 
students manipulate on them to reflect the process of a given problem could be an alternative 
avenue to pursue?  The mathematical operations behind calculations of change, combine, 
compare, and equalize are very fundamental in sciences, and it seems that understanding their 
core meanings might have a profound impact on students success on problem-solving not only 
at an elementary but also at a high school level and beyond. 
 
Looking Ahead: Linking the Representations  
Cheng (1999) proposed four learning stages that can help students in developing conceptual 
understanding through using representations: domain, external representation, concept, and the 
internal network of concepts. While moving from one stage to another to reach the internal 
network, the learner is immersed in four processes: observation, modeling, acquisition, and 
integration. Except the study conducted by Rittle-Johnson, Siegler, & Alibali (2001) and 
Terwel et al. (2009), the majority of the gathered research did not explicate on these processes, 
focusing instead on applying fixed models without discussing their possible modifications.  
 
It seems that possessing the right representation does not suffice for an understanding. To 
confirm an understanding, one needs to be able to put this representation through its paces, 
explaining and predicting novel cases. Thus, to have an understanding of a representation is to 
be in a state of readiness, taking the representation as a point of departure in the solution 
process, not as an unquestionable formula a representation. Terwel et al. (2009) proved that 
having students explore and modify given representations produced the highest effect size. This 
can be supported by the effects of induced math modeling phases that allowed the students to 
link representations with the constraints of real scenarios (Sokolowski, 2018).  
 
Applying representations often creates exploratory learning environments (English & Watters, 
2005) that consequently can be guided by inductive or deductive inquiry processes. Thus, other 
themes worthy of a further investigation emerged; should the use of representations to be 
organized inductively, as suggested by Nunokawa (2005)? How do elementary school students 
perceive these two major scientific inquiries? Are these inquiries rooted in virtues of 
mathematical representations, or content-domain? Having students develop principles of 
representations by identifying commonalities due to applications and use such representations 
to model other contexts beyond the boundary of a math classroom would be an interesting 
pursuit for future studies. 
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Bridging Representations Used at Elementary and High School Levels 
There are other questions can be generated from this study, for example; how does the use of 
representations evolve as students’ progress with their mathematics classes, especially 
schemata-based that dominate problem-solving in Pre-K through Grade 5. Fuchs, L., Fuchs, 
D., Finelli, Courey, & Hamlet (2004) suggested using schemata more extensively for problem-
solving also at the high school level, especially targeting students with learning disabilities. 
Having high school students derive processes of transitioning from, for example, proportion to 
a linear or rational function or from percent rate to an exponential function seem like valuable 
topics to explore. 
 
Another conclusion calls for extending the idea of using schemata to sciences and other 
subjects in a consistent manner that will carry out their general principles. This transition would 
help broaden the meanings and consequently built a stronger image of these representations in 
students’ long-term memories. Do students experience applications of similar representations 
in their science classes? Should these main avenues of knowledge acquisition depend on the 
nature of the representation (schemata or pictorial) or their general purpose? Further research 
in these areas is needed, and it is believed that this paper provides some prompts for such 
actions.  
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